
A Partial Reconfiguration based
Microphone Array Network Emulator

Bruno da Silva∗, Federico Dominguez§, An Braeken∗ and Abdellah Touhafi∗
∗Dept. of Industrial Sciences (INDI), Vrije Universiteit Brussel (VUB), Brussels, Belgium

§Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Ecuador

Abstract—Nowadays, microphone arrays are used in many
applications for sound-source localization or acoustic enhance-
ment. The current Micro-Electro-Mechanical Systems (MEMS)
technology allows the development of networks of microphone
arrays at a relatively low cost. Unfortunately, the evaluation of
these networks requires controlled acoustic environments, such
as anechoic chambers, to avoid possible distortions and acoustic
artifacts. In this paper, we present a partial reconfigurable
FPGA platform to emulate a network of microphone arrays. Our
platform provides a controlled simulated acoustic environment,
able to evaluate the impact of different network configurations
such as the number of microphones per array, the network’s
topology or the used detection method. Data fusion techniques,
combining the data collected by each node, are used in this
platform. In addition, our platform is also capable to converge
to the ideal network with regards to power consumption, while
still maintaining the desired level of sound-source localization
accuracy. A graphical user interface provides a friendly control of
the network and the parameters under test during the execution
of the partial reconfiguration operations. Several experiments are
presented to demonstrate some of the capabilities of our platform.

I. INTRODUCTION

Wireless sensor networks (WSN) composed of microphone
arrays are becoming popular thanks to a relatively low cost
of Micro-Electro-Mechanical Systems (MEMS) sensors. How-
ever, validation and verification of these networks are time
consuming procedures. Furthermore, before the deployment
of a WSN composed of microphone arrays, the network
must be tested in controlled environments such as anechoic
chambers to avoid undesired reflections, possible distortions or
acoustic artifacts. Simulators are normally used first to test and
estimate the capabilities of a network. However, simulation
processes are computationally intensive tasks which usually
require hours or days to complete. We present an FPGA-
based microphone array network emulator to accelerate the
simulation of such type of networks. Our proposed network
emulator exploits the inherent parallelism that microphone
arrays present by mimicking the node’s response, combin-
ing the response of the network’s nodes and providing an
estimation of the network’s response under a certain acoustic
scenario. Therefore, instead of a pure software-based network
emulator like the one presented in [1], the proposed network
emulator uses an FPGA to accelerate the node’s computation
by implementing exactly the same HDL code [2], [3] that is
going to be deployed in the nodes of a real network. Other
authors such as in [4] or in [5] have already proposed the
use of an FPGA to accelerate WSN emulators and wide-

band wireless channel emulators respectively. Both works are
complementary to ours as we focus on a detailed emulation of
a network node while simplifying the wireless communication
aspect.

The presented network emulator exploits the bandwidth
presented on the PCI-express (PCIe) interface to not only
communicate host and FPGA but also to partially reconfig-
ure the FPGA-based network emulator to adapt the network
topology and the node’s configuration when needed. Partial
reconfiguration (PR) through PCIe has been already used
in [6] and [7], however our network emulator uses the Xilinx’s
technology [8] in a more complex application. As far as we
are aware, the presented network emulator is one of the first
applications using the recently introduced Xilinx MCAP [9]
to partially reconfigure the FPGA through PCIe.

The main contributions of this work can be summarized as
follows:
• An architecture of an FPGA-based network emulator.
• The use of partial reconfiguration through PCIe to recon-

figure the network’s characteristics.
• The comparison of different sound-source detection meth-

ods from a network perspective.
This paper is organized as follows. The description of the

nodes and the detection methods are proposed in II. In Sec-
tion III, the description of the network emulator architecture,
the data fusion technique and the partial reconfiguration is
done. In Section IV, the proposed network emulator is used to
evaluate a few representative network configurations. Finally,
our conclusions are presented in Section V.

II. NODE DESCRIPTION

The nodes of the network are designed for far-field and
non-diffuse sound fields like the one presented in [1]. Their
architecture is an improved version of the one presented
in [2], [3] and is composed of four stages: a Sensing stage, a
Filter stage, a Beamforming stage and a Detection stage.

Sensing Stage: The audio data is acquired by a microphone
array composed of four concentric subarrays of 4, 8, 16
and 24 digital ADMP521 MEMS microphones mounted on
a 20-cm circular printed board. Each subarray is dynamically
activated or deactivated in order to facilitate the capture of
spatial acoustic information using a beamforming technique.
This array modularity increases the efficiency of the sensing
stage because the node can adapt its computational resources
in accordance to the surrounding acoustic field.

Authorized licensed use limited to: ESCUELA POLITECNICA DEL LITORAL (ESPOL). Downloaded on January 12,2023 at 16:38:01 UTC from IEEE Xplore. Restrictions apply.

Orientation

+

P-SRP

Intra-SubArrays

Sums

+

+

+
+..

.

+

...

+

Delayed MIC1

Pre-Computed Delays

per Orientations

Inter-SubArrays

Sum+

+

+
+..

.

+

| |
2

..
.

..
.

Delayed MIC4

Delayed MIC29

Delayed MIC52

×

Cross

Correlations

Delayed MIC29

Delayed MIC52

Cross-Correlation

×
×
×
×
×

Delayed MIC1

Delayed MIC4

+

Intra-SubArrays

Sums

+
+

+

+

×
×

+

×
+

×

+
+..

.

+

...

+

Inter-SubArrays

Sum

Subplus()

..
.

Pre-Computed Delays

per Orientations
Orientation

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 1. Detection methods considered for the Detection stage when using the two
innermost sub-arrays.

Filter Stage: The MEMS microphones are clocked at 2
MHz to oversample the audio signal to generate an output
multiplexed pulse density modulation (PDM) signal. Each
microphone signal has one cascade of filters to retrieve the
audio signal. The first filter is a 16th decimator low-pass 4th
order Cascaded Integrated-Comb (CIC) decimator filter, which
only involve additions and subtractions to reduce the resource
consumption. The CIC filter is followed by a running average
block to reduce the microphone DC offset and to increase the
dynamic range of the filtered signal. The last component of
the filter stage is a 15th order serial low-pass FIR filter with a
cut-off frequency of 12 kHz and a decimation factor of 4. The
serial design of the FIR filter drastically reduces the resource
consumption, but limits the maximum order of the filter, which
must be lower than the decimation factor of the CIC filter.

Beamforming Stage: The filter stage is followed by the
beamforming stage, which amplifies the sound coming from a
pre-determined direction while suppressing the sound coming
from other directions. Beamforming uses a spatial filtering
technique to estimate the angle of arrival of sound signals
(see [1], [2] or [3] for more details).

Detection Stage: The detection stage generates a polar steer-
ing response map, whose lobes are used for the localization of
sound sources. Figure 1 details the implementation of the two
different methods under evaluation: Polar Steered Response
Power (P-SRP) and Cross Correlation (CC). On one hand,
the P-SRP method [1] uses the added beamformed values to
calculate the output power of the signal per orientation θ in the
time domain (P (θ, t)). On the other hand, a CC method based
on the cross-correlated pairs of microphones offers a higher
accuracy, specially for frequencies higher than 8 kHz, but
demands a high number of multiplications because all possible
pairs of microphones need to be correlated. The total number
of multiplications (Mam) drastically increases when increasing
the number of active microphones. For instance, Mam = 6
when only the inner subarray, composed of 4 microphones,
is active, but drastically increases from 66 to 1326 when
activating the first two inner subarrays (12 microphones) or
all subarrays (52 microphones) respectively. As a result, CC
is only considered when one or both of the inner subarrays are
active. Independently of the detection method, the architecture
needs 155.86 ms to generate a polar steering response map
when using all the subarrays.

III. NETWORK EMULATOR DESCRIPTION

The main purpose of the network emulator is to mimic the
functionality of a network composed of different microphone
array nodes and to evaluate the network’s response for certain
acoustic scenarios. This network increases the accuracy of
the sound-source location by combining the response of each
node. This information is used as an early estimation about
how the network would react in real-world scenarios and
allows a fast design space exploration in order to target pri-
orities like overall power consumption or the accuracy of the
sound-source localization. As a result, our network emulator
is flexible enough to support multiple network topologies,
different sound-source detection methods or a variable number
of nodes and sound sources.

Figure 2 depicts the main components of the network
emulator, which are distributed between the host and the
FPGA.

Host: The host contains the sound source generator, the data
fusion of the polar maps and the evaluation of the data fusion.
A graphical user interface (GUI) abstracts the user from these
computations and from the host-FPGA communication and
the partial reconfiguration. The GUI consists of a front-end
generated in Matlab that communicates with the FPGA back-
end. The front-end is capable of simulating a sound field with
multiple sound sources and nodes. Each sound source can have
different frequency bands and each node can have different
array configurations and calculation methods. Multiple sound
sources are converted to PDM format in order to be compatible
with the expected input data format of the nodes. The front-
end uses data fusion to locate sound sources. Data fusion tech-
niques combine the information gathered by different sensors
measuring the same process to enhance the understanding of
that process. In the context of this article, data fusion is per-
formed by aggregating and combining the acoustic directivity
information, represented as a polar steering response map,
gathered by each node to produce a probability map of the
location of the observed sound sources in a two-dimensional
field. This technique is originally presented in [1] and has
been used to validate the capacity of their microphone array
design to locate sound sources (Figure 3). Based on the data
fusion results, the front-end calculates three error parameters:
the localization error (in meters), the number of undetected
sound sources, and the number of phantom sound sources.

Sound-Source

Generator

Data Fusion

Evaluation

E
x

te
rn

a
l

M
e

m
o

ry

Reconfiguration

Scheduler

...

AXI4 Stream FIFO

FPGA HOST

A

X

I

C

O

M

B

I

N

E

R

AXI4 Stream FIFO

Reconfigurable Module

AXI4 Stream Wrapper

AXI4 Stream Wrapper

MCAP

Driver

Reconfigurable Partition 3

P
C

Ie
 G

e
n

3
 x

8

Node Emulator

Reconfigurable Partition 0

Node Emulator

P
C

Ie
 D

M
A

 S
u

b
sy

st
e

m

MCAP

Fig. 2. Distribution of the network emulator’s components. The partial reconfiguration
of the nodes and the data communication between the host and the FPGA are done via
PCIe. The dark blue boxes represent the components involved in the PR.

Authorized licensed use limited to: ESCUELA POLITECNICA DEL LITORAL (ESPOL). Downloaded on January 12,2023 at 16:38:01 UTC from IEEE Xplore. Restrictions apply.

(a) One node (b) Two nodes (c) Four nodes

Fig. 3. Our data fusion technique combines the polar steering response map produced by each node to generate a probability map that estimates the location of the observed
sound sources. As more nodes are used, the localization accuracy is improved. This technique has been adapted from [1].

These values are used to evaluate the network configuration
and to reconfigure the FPGA back-end if needed. The front-
end allows us to create a network of nodes and to validate our
architecture with a permutation of different scenarios: array
architecture, detection method, sound spectrum, and sound-
source positions.

PCIe Communication: The communication between the host
and the FPGA uses the Xilinx PCIe DMA driver available
in [11]. This driver allows the software running on the host to
interact with the DMA endpoint IP via PCIe.

FPGA: On the FPGA side, the network emulator uses the
IP core DMA subsystem for PCIe [12] with PR support.
The DMA capability of this core is configured to act like an
AXI4 bridge, operating at 125 MHz and with an AXI4-Stream
(AXI4-S) interface of 256 bitwidth. Each reconfigurable parti-
tion (RP) is encapsulated in an AXI4-S wrapper that interfaces
an input AXI4-S FIFO. Both blocks are integrated as a Node
Emulator entity (Figure 2). The network emulator is composed
of 4 Node Emulators operating at 62.5 MHz and with a 64-bits
AXI4-S interface each. Finally, the output AXI4-S of the Node
Emulators are combined in a 256-bits AXI4-S to interface the
PCIe DMA Subsystem IP core.

Partial Reconfiguration over PCIe: Our PR uses the Media
Configuration Access Port (MCAP) [8], which is a new
configuration interface available for UltraScale devices that
provides a dedicated connection to the ICAP from one specific
PCIe block per device. This interface is integrated into the
PCIe hard block and provides access to the FPGA configura-
tion logic through the PCIe hard block when enabled. The
bitstream loading across the PCIe to configure the RPs of
the network emulator is detailed in [9]. The detailed process
is only applicable for UltraScale architectures since these
architectures need clearing bitstreams in order to prepare
the RP for the new configuration. Consequently, each new
RP reconfiguration requires a preceding clearing operation,
otherwise the subsequent reconfigurable module (RM) cannot
be initialized [8]. It demands a knowledge of what RM is
configured at each RP. This task is done at the host side
by the reconfigurable scheduler, which monitors the status of
the nodes and applies the mandatory clearing reconfiguration
before each PR of a node.

Resources RP Node 0 RP Node 1 RP Node 2 RP Node 3

Slice Registers 117120 (40.93%) 117120 (40.93%) 120960 (39.64%) 129600 (36.99%)
Slice LUTs 58560 (62.56%) 58560 (62.57%) 60480 (60.57%) 64800 (56.53%)
LUT-FF Pairs 58560 (41.63%) 58560 (41.74%) 60480 (40.35%) 64800 (37.58%)
BRAM 180 (28.89%) 144 (36.11%) 180 (28.89%) 216 (24.07%)
DSPs 360 (30.00%) 576 (18.75%) 576 (18.75%) 648 (16.67%)

Bitmap Size 4,789 MB 4,925 MB 4,888 MB 6,934 MB
Clearing Time 0.134 s 0.104 s 0.089 s 0.119 s
Reconfig. Time 1.169 s 1.22 s 1.164 s 1.684 s

TABLE I
Dimensions and highest percentage of occupancy of the four reconfigurable modules.

Fig. 4. The average localization error is shown here for 4 nodes and 4 different
architectures in each node, totaling 256 measurements. As the network uses more
microphones and therefore consumes more power, the localization error improves. Here
the correlation coefficient between error and power consumption is -0.58.

Reconfigurable Partitions of the Network Emulator: Four
RPs are available on the network emulator, each supporting
a variable number of RMs. For instance, there are 2 different
RMs based on the detection method. However, the RPs must be
designed to support the node configuration with all subarrays
active. The available resources per RP are shown in Table I.
A slight variation occurs because not all RPs can contain the
same number and type of slices. The reconfiguration time per
RP have been experimentally obtained at the MCAP driver
side. This timing ranges from 1.3 s to 1.8 s, including the
cleaning operation and the partial reconfiguration.

IV. RESULTS

A couple of experiments are detailed in this section to
demonstrate some of the capabilities of the network emulator.
The sound field simulation used in the front end has been
optimized for a 10 m by 10 m two dimensional open field
where sound attenuation, caused by propagation, has been

Authorized licensed use limited to: ESCUELA POLITECNICA DEL LITORAL (ESPOL). Downloaded on January 12,2023 at 16:38:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The localization error, using one sound source and four nodes at three different
frequencies, improved as the total number of microphones in the network increased. Both
methods, P-SRP and CC, performed equivalently.

assumed to be negligible. The performance of several node’s
configurations and different detection methods are explored.
For instance, we relate the localization performance of a
network of four nodes to the overall power consumption
(Figure 4). Most of the experiments demand a PR of one or
more RMs. The presented results are averaged values obtained
after a minimum of 15 random positions of a sound source for
a certain network topology.

The system has been implemented in an Ubuntu 14.04.1
machine using Vivado 2016.4 and Matlab 2016b combined
with C/C++ code and bash scripts. The FPGA card used for
the implementation of the network emulator is a Xilinx Kintex
Ultrascale from Alpha Data (ADM-PCIE-KU3) with a Gen3
PCIe connection.

A. Analysis of a Variable Number of Active Subarrays

The total power consumption of the network depends on
the number of active microphones per node [3], which can be
modified in runtime without PR by activating or deactivating
subarrays. The capacity of the FPGA to modify the total
number of active microphones per node allows a network of
nodes to converge to an overall minimum power consumption
for a given localization accuracy. To explore the relationship
between power consumption and localization accuracy, we
performed an experiment with a network of four nodes and one
sound source of 4 kHz. The experiment varied the number of
active subarrays in each node, corresponding with a total 256
different network configurations. The results, shown in Fig-
ure 4, demonstrate the expected negative correlation between
power consumption and localization error.

B. Impact of the Detection Methods

The following experiment intends to demonstrate how PR
allows to compare two different detection methods from the
network point of view. On one hand, the P-SRP is the original
detection method introduced and analysed in [1], [2] and [3].
On the other hand, the proposed CC is a different detection
method which promises better accuracy when using a lower
number of microphones. The theoretical implementation of
CC when using only two inner subarrays needs 66 multipli-
cations in order to reach all possible combinations of the 12
active microphones. However, our proposed implementation
only considers the combinations between the microphones of a
subarray and not the combinations between the microphones of
different subarrays. Therefore, the number of multiplications

is reduced to 32, with 6 and 28 multiplications for the
innermost subarray and the second inner subarray respectively.
Figure 5 shows the average error in the estimation of the sound
source when applying data fusion of 4 nodes using the two
inner subarrays. The values have been obtained for a random
position of a standalone sound-source at 3 different frequencies
(4, 8 and 10 kHz). The RMs are partially reconfigured to
switch between both methods. The evaluation also considers
the permutations of all possible combinations of the two inner
subarrays. The results show that the CC method does not offer
a significant improvement compared to the P-SRP method.
Despite offering a lower estimation error, its implementation in
a distributed network of microphone arrays is not completely
justified if considering the additional resource consumption
due to the required multiplications.

V. CONCLUSION

The presented network emulator has shown the capacity to
evaluate different WSN configurations thanks to its ability to
mimic the node’s response to several sound sources. Although
the partial reconfiguration through PCIe was not as fast as ex-
pected, this technique allows the network emulator to quickly
explore multiple acoustic scenarios. A future automation of the
network reconfiguration promises to determine, in real-time,
the best strategies to obtain the lowest power consumption
with the lowest estimation error.

REFERENCES

[1] Tiete, J., et al., SoundCompass: a distributed MEMS microphone array-
based sensor for sound source localization, Sensors 14.2 (2014): 1918-
1949.

[2] da Silva, B., et al., Runtime reconfigurable beamforming architecture
for real-time sound-source localization. 26th International Conference on
Field Programmable Logic and Applications (FPL), EPFL, 2016.

[3] da Silva, B., et al. Design Considerations when Accelerating an FPGA-
Based Digital Microphone Array for Sound-Source Localization. Journal
of Sensors (2017): 2.

[4] Nasreddine, N., et al. Wireless sensors networks emulator implemented
on a FPGA. International Conference on Field-Programmable Technology
(FPT), (pp. 279-282). IEEE, 2010.

[5] Val, I., et al., FPGA-based wideband channel emulator for evaluation
of Wireless Sensor Networks in industrial environments, In Emerging
Technology and Factory Automation (ETFA), (pp. 1-7). IEEE, 2014.

[6] Vu, D. V.,et al., Enabling partial reconfiguration for coprocessors in
mixed criticality multicore systems using PCI Express Single-Root I/O
Virtualization, In ReConFigurable Computing and FPGAs (ReConFig),
(pp. 1-6) . IEEE, 2014.

[7] Kizheppatt, V.et al., DyRACT: A partial reconfiguration enabled ac-
celerator and test platform, 24th International Conference on Field
Programmable Logic and Applications (FPL), IEEE, 2014.

[8] Xilinx, Vivado Design Suite User Guide - Partial Recon-
figuration; Xilinx User Guide 909 (v2016.4), https://www.
xilinx.com/support/documentation/sw manuals/xilinx2016 4/
ug909-vivado-partial-reconfiguration.pdf.

[9] Xilinx, Bitstream Loading across the PCI Express Link in UltraScale
Devices for Tandem PCIe and Partial Reconfiguration; Xilinx Answer
64761, https://www.xilinx.com/support/answers/64761.html.

[10] AnalogDevices. ADMP521 datasheet Ultralow Noise Microphone with
Bottom Port and PDM Digital Output, Technical Report, Analog Devices:
Norwood, MA, USA, 2012.

[11] Xilinx, Xilinx PCI Express DMA Drivers and Software Guide; Xilinx
Answer 65444, https://www.xilinx.com/support/answers/65444.html.

[12] Xilinx, DMA Subsystem for PCI Express v2.0; Xilinx Product Guide
195, https://www.xilinx.com/support/documentation/ip documentation/
xdma/v2 0/pg195-pcie-dma.pdf.

Authorized licensed use limited to: ESCUELA POLITECNICA DEL LITORAL (ESPOL). Downloaded on January 12,2023 at 16:38:01 UTC from IEEE Xplore. Restrictions apply.

